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This reading is meant as an opportunity for you to examine the endeavor of
statistical inference from several perspectives. I start off by discussing the goals of
statistical inference (i.e., the big picture) before moving into key components of how
we actually carry out the process of making a statistical inference.

1 The Big Picture

Figure 1: The Statistical Workflow
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Within the workflow of Statistics (see Fig. 1), Statistical Inference occurs as part
of the right-hand side. While the cloud shapes indicate using the Exploratory Data
Analysis (EDA) approach and the rectangular shapes indicate Confirmatory Data
Analysis (CDA) approaches, keep in mind that we often move back and forth be-
tween these approaches. This is to say that while Statistical Inference lives within
CDA, the tools of Statistical Inference can be used within EDA to build models. The
key is to ensure you have thought carefully about your Statistical Research Question.

At the heart of Statistical Inference is the guiding question “How Do We Make De-
cisions Based on Our Data?” To answer this question, we must engage in inference
making. Our inferences often fall in line with one of two goals:

1) We want to say something substantial/useful about the broader population that
our sample came from (i.e., population features).

2) We want to say something substantial/useful about how a particular attribute
behaves in the long-run (i.e., distribution features).

In both cases we want to use the data that we have from the sample as evidence to
support our reasoning (from statistical tools and methods) to make a conclusion and
answer our research question. The conclusion we reach is what we refer to as the
statistical inference. We use these inferences to make decisions such as whether
a particular treatment improves patient outcomes, a teaching method improves stu-
dent understandings of a particular topic, how many individuals of a particular species
might live in an area, or what proportion of the population might hold a particular
belief.

The two goals of making statistical inferences serve as our initial prompts for a sta-
tistical research question. Below I give examples of research questions that fall under
both goals. While there are questions that fit squarely under one goal or the other,
there are research questions that fit both goals. Think about the examples in both
categories and their commonalities/differences. You should then think up of your
own research questions and see which goal(s) your questions fit.

Population Features
Some times the goal of our inquiry is to learn something about the population from
which we drew our sample. Research questions that fall into these kinds of situations
include:

• What is the ethnic breakdown of people living in the United States of America?

• What proportion of individuals prefer Coke to Pepsi?

• How many Amur leopards (Panthera pardus orientalis) are there?

• How many Western Prairie Fringed Orchids (Platanthera praeclara) are there?

• What are college students’ top ways to procrastinate?

Aspects of Distributions
Other times our goal is learn something about the long-run behavior of an attribute
or the interaction of attributes. Research questions in this category often look like
the following:
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• Does Drug A reduce the length of hospital stay for individuals who suffered a
heart attack when compared to a placebo as well as standard care?

• Does this new substrate increase the efficiency of the microchip?

• Is there a relationship between a person’s ethnicity and political affiliation?

• What will be the expected global temperature in 2050?

• Do teachers’ meanings have an impact on what students learn?

2 The Key Components to Statistical Inference

When we want to make an inference, we need to ensure that we work in a methodical
way to ensure that we have valid reasoning to underpin our decision. To this end, we
can imagine the following sequence of steps:

1) The Statistical Research Question (SRQ)

a. Classify the SRQ by Problem Archetype
b. Identify the necessary parameter(s)

2) Form Hypotheses

3) Select an Estimator

a. Point vs. Interval (or both)
b. Select a function(s)

4) Design the Observational Study or the Experiment

a. Develop a First-order Stochastic Process to collect data
b. Develop a Second-order Stochastic Process to get the

necessary sampling distribution for your estimator (Are
you going to do replication, use simulations, or employ a
shortcut method?)

5) Set our Significance Level (Threshold of Unusualness)

a. Pick a Type I Error Rate to Control
b. Set your Error Rate
c. Use an appropriate method to set your Threshold of Un-

usualness (Significance Level)

6) Carry out the study/experiment

7) Analyze the data

a. Clean your data
b. Describe what you have (EDA)
c. Take the Inference Step via the Sampling Distribution

8) Report
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Be aware that there is a continual back-and-forth relationship between the first four
steps (i.e., the Statistical Research Question, Hypotheses, Estimator Selection, and
Designing the Experiment). As you work through each of these components you’ll find
yourself revisiting and revising the others. However, once you begin Step 6 (Carrying
out the study/experiment) the earlier steps become “locked in”. Making any changes
at this point can jeopardize the validity and generalizability of your conclusions.

2.1 The Statistical Research Question

Recall that a Statistical Research Question (SRQ) is any question that can only be
answered by collecting and analyzing data using statistical methods. The SRQ is the
“starting” place for all statistical inference1. From our noticing and curiosity, we begin
to shape the SRQ into something that is reasonable and feasible. Research questions
often go through dozens of revisions before we reach the point where we can move on
from the question to the next stage. Even after we’ve moved to a subsequent step,
we can and will continue to refine the SRQ; all the way up to the point of collecting
data.

2.1.1 Problem Archetypes

One of the most challenging parts of doing statistical inference is not computing the
values of your statistics/estimators, but trying to decide what statistical method(s)
are the most appropriate to use so that you can answer the SRQ. Over the decades,
statisticians have developed theories that support different inference methods. We’ve
categorized these methods into overarching problem archetypes much like how Tukey
proposed Reference Situations to help us recognize when certain named distributions
are in play. By seeing which of these problem archetypes our SRQ is most compatible
with, we can then leverage statistical theory to narrow our options. Below are some
of the most common types of problems.

2.1.1.1 The Dichotomous Data Problem
The Dichotomous Data Problems are related to Bernoulli Trials. In fact, we’re in-
terested in estimating the probability of “success” in these problems. Alternatively,
we could also think about these problems as being about what proportion of a pop-
ulation fits into a particular group vs. complementary second group. These types of
SRQs can refer to a single population (“one sample”) or can compare two different
populations (“two sample”).

Examples:

• Do the highest grade earning Swedish students know important information
about Global Health? (I encourage you to go watch the following TED Talk:
https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_

ever_seen).

1In all actuality, the starting place is when someone notices something and asks “Why is that
happening?” That initial curiosity is what will drive the entire Statistical Workflow through both
the EDA and then CDA sides.
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• What proportion of USA citizens are left-handed?

• Do left- and right-handed university students have the same 4-year graduation
rate?

2.1.1.2 The Location Problems
Location Problems come in a variety of formats. What links them all together is that
we’re primarily interested in learning something about the location parameter(s) for
the distribution(s). The two most commonly used distribution features here are the
Expected Value and the Distribution Median. In essence, we’re trying to find the
value of the attribute to use a central/key reference point. There are four common
types of Location Problems:

• One Sample Location Problem: When we want to infer the value of the
location parameter for an attribute based upon our single sample.

– What would be the typical height of an adult man (woman)?

– What is the typical score on SAT for high school seniors in Colorado?

• Matched Pairs or Paired Replicates (Pre/Post) Problem: When we
want to infer the shift in the location parameter’s value when we compare the
sample in the pre-treatment condition to the same sample post-treatment. This
type of problem is sometimes referred as having “dependent samples”.

– Do white leghorn chicken embryos make more beak claps in the dark or in
the light?

– Are federal pay scales commensurate with private sector salaries?

– Do students correctly answer basic multiplication facts faster after receiv-
ing instruction on fact families?

• Two Sample Location Problem: When we want to infer the effect of some
treatment by looking at the shift in the location parameter’s value using two
independent samples which had different levels of the treatment applied (e.g.,
drug A vs. drug B).

– Does a particular social skills training program for alcoholics reduce alcohol
intake?

– Are children who watched TV or film violence more tolerant of “real-life”
violent behavior than children who instead watched a nonviolent TV show
or film?

– Does using Inquiry Based Learning lead to an increase in student test
scores in a Calculus I course?

• The k-Sample Location Problem: When we want to infer the effect for
multiple (3+) levels of treatment by looking at shifts in the value of the location
parameter. See the Oneway Layout Problem.
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2.1.1.3 The Independence Problem
The Independence Problem deals with SRQs that mimic the generic forms “Does
[Attribute A] have a relationship with [Attribute B] ?” or “Are the values of
[Attribute A] independent from the value [Attribute B] ?” To answer these ques-
tions, we must conceive of each member of the population as having values for both
attributes. We are then trying to investigate the statistical relationship between these
two attributes. If there is no relationship between the attributes we say that they are
independent. However, if there is a dependency between the attributes, we then
investigate the nature/type as well as the degree/strength of the dependency. The
Independence Problem can be extended to additional attributes.

Examples:

• Is blood type independent from ethnicity?

• Is there a relationship between a person’s choice of favorite color and their
self-identification of gender?

• Does a person’s biological sex impact political affiliation?

• Is there a relationship between a person’s ethnicity and political affiliation when
we account for gender?

2.1.1.4 Correlation/Association Problems
Correlation/Association Problems are intimately tied up with the Independence Prob-
lem. Here, we move beyond whether there is a dependency into to trying to measure
the strength and direction of the relationship.

Examples:

• What is the strength of the relationship between blood type and ethnicity?

• What is the relation between blood pressure and age in human subjects?

• What is the relation between students’ attendance and the morning tempera-
ture?

• What is the strength and direction of the relationship between biological sex
and political affiliation?

2.1.1.5 The Dispersion Problems
Dispersion Problems are a lot like location problems except that instead of the loca-
tion parameter being the target of interest, we’re interested in the scale parameter.
The most common scale parameter is to focus on the distribution Variance (or Stan-
dard Deviation).

Examples:

• Is there more variability in the time spent in the room after witnessing “real-
life” violent behavior by children who watched TV/film violence than those who
did not?

• Is there more variability in the amount of plant matter consumed by larval
southern armyworms for Kentucky and Florida pokeweed plants?
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2.1.1.6 The Oneway Layout
The k Sample Location Problem is often handled by a technique known as the Oneway
Layout. The Oneway Layout not only allows us to look at k ≥ 3 different groups at
a time but allows us to get a handle on the Variation Between Collections, the Vari-
ation Between Individuals/Variation Within Collections, and the Variation Within
Individuals. This family of methods also inherently controls Type I Errors at the
Experimentwise Error Rate (EER) as these methods are omnibus tests. An omnibus
test is any inference method/hypothesis test where the alternative hypothesis is not
a single statement but is a collection of statements. Omnibus tests do require doing
additional testing, referred to as Post Hoc Analysis, to determine which of the individ-
ual statements within the alternative hypothesis collection are supported by the data.

The Oneway Layout requires us to build models for our data by envisioning each
data value as being made up components tied to specific causes/factors. Each term
in our model then represents a factor that contributes to the data value. The Oneway
Layout can be extend out through the ideas of Blocking as well as the addition of
more terms (e.g., Twoway and Threeway Layouts).

Examples:

• What is the rate of dust removal in normal people, people who have obstructive
airway disease, and people who have asbestos?

• Is there a difference in the number of glucocorticoid receptor sites per leukocyte
cell when looking at normal people, those who have hairy-cell leukemia, those
with chronic lymphatic leukemia, those with chronic myelocytic leukemia, and
those with acute leukemia?

• Is there a difference in lifetime salary based upon college major?

2.1.1.7 Twoway+ Layouts
As mentioned, the Oneway Layout Problems can be extended to what are called
Twoway Layouts or even further through Factorial Designs. The underlying common-
ality is that we’re attempting to partition a particular attribute’s (i.e., the response)
value into components to make up a factor model. Oneway implies that we have one
factor, twoway implies two, and factorial implies that we have more than two. When
we have two (or more) factors in our model, we can start adding in interaction terms.
We can also use one of our factors as a “Block”. A Block refers to an attribute that
we don’t necessarily care about in terms of explaining the response but we do want
to account for in our experiment.

Examples:

• Is there evidence to suggest that a particular variety of corn produces higher
yields when we account for any effects from the fields used? (The fields are
Blocks.)

• Does a student’s mother’s level of education and mother tongue play a role in
the student’s achievement on a standardized test? (Twoway)
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• Do students’ ethnicity, letter grade in prior class, socioeconomic status, and
self-reported gender impact their ACT scores?

2.1.1.8 Regression Problems
Regression Problems often deal with prediction. Specifically, we want to be able to
use the known value(s) of a certain attribute(s) to estimate the value of another at-
tribute. Regression is like the Oneway/Twoway+ Layouts in that we are building
mathematical models. In fact, the mathematical tools that we use with the former
(i.e., ANVOA) are the same as here in regression; the difference is how we conceptu-
alize the attributes we use. In ANOVA, we call them “factors” and they tend to be
character-nominal or character-ordinal. In Regression, we call them “predictors” and
they tend to be mostly numeric-ordinal or numeric-continuous.

Examples:

• We want to understand how the peak plasma growth hormone level behaves
given what we know about short children’s ages, sexes, heights, weights, and
various skin fold measurements.

• We want to study the relationship between the number of bids requested by
construction contractors for basic lighting equipment during a week and the
time required to prepare the bids.

• We want to predict whether a student will successfully complete a class given
information about his/her attendance, past academic success, and interest in
the course.

2.1.1.9 Distribution/Density Problems
Distribution or Density Problems refers to questions where we want to know one of
two things:

1) Does our sample support believing that the long-run behavior of the attribute(s)
of interest follow the particular named distribution we’ve theorized?

2) Do our groups have the same long-run behavior?

Remember that when we speak of “long-run behavior” are referring to the distri-
bution of the attribute/stochastic process that underpins our data. Such questions
can allow us to make predictions about the occurrence of particular values for our
attribute or even allow us to see whether or not a grouping attribute creates changes
in the distributions (along the lines of independence questions).

Examples:

• Do US adult men’s heights follow a normal distribution with an Expected Value
of 70 inches and Variance of 12.35 inches-squared?

• Is there a difference in the distribution of student scores due to gender?
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2.1.1.10 Other Types of Problems
There are many other kinds of problems that will not be dealt with here. For the most
part, these additional problems can be thought of as extensions or novel applications
of the previous problems designed to handle new contexts/situations. Some exam-
ples would be looking at Survival Analysis, Quality Control, Principal Components,
[Latent] Factor Analysis, Discrimination/Classification Problems, Homogeneity, and
Clustering, just to name a few.

2.1.2 Modeling and Problem Solving

All of the above archetypes live under the the umbrella of Statistical Modeling. Nearly
every SRQ we deal with has at the core either a particular model we’re testing against
our data (CDA) or what models we might build that could explain what we see in
our data (EDA). Mathematical and Statistical Modeling techniques go hand-in-hand
with each other as well with Problem Solving. Thus, draw upon your experiences on
both topics as you continue to explore Statistical Inference.

2.1.3 Identifying the Parameter

Once you’ve identified what type of problem the SRQ is, we can identify what pa-
rameter we need to use. The parameter we select will play a role in writing our
hypotheses as mathematical statements, picking our estimator, and carrying out our
analyses. The following table can serve as a way to identify what parameters to use.
By convention, I’m using numbered subscripts to denote different groups/samples.
The above table is not exhaustive by any stretch of the imagination. Rather, think

SRQ Problem Type Parameter

One Sample Dichotomous p or π

Two Sample Dichotomous
Common: p1 − p2 or π1 − π2

Rare: p1
p2

or π1

π2

One Sample Location µ or θ

Two Sample Location
Common: µ1 − µ2 or θ1 − θ2

Rare: µ1

µ2
or θ1

θ2

Dispersion
Same as Location but using σ2 for Variance

and σ for Standard Deviation

k-Sample/Oneway Layout αi or τi where i denotes group

Independence “Independence”

about the table as providing a starting point for some of the most common types of
statistical inference research questions.

2.2 Writing Hypotheses

Once you have formed an SRQ, you then start turning your attention to the possible
answers. We will always form a pair of statements: one statement reflects what we
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believe is happening and the other reflects a simpler model. The two statements are
complements and together must cover the entire space of possible answers. Since the
statements are complements, they are mutually exclusive. The answer to the question
that you believe explains what is going on (before you collect any data) is what we
call the alternative hypothesis, H1. The answer reflecting the simpler model is
what we call the null hypothesis, H0.

The null hypothesis reflects the simplest model that answers the SRQ. Often this
simplest model is the model that reflects that there is “no statistically significant
difference” between our data and theory (or between the groups we’re studying).
However, we can have null hypotheses where the model does entail an actual differ-
ence (e.g., are double stuf oreos really double the stuf?), in these cases the phrase
“no statistically significant difference” really becomes “no statistically significant dif-
ference beyond what we already expect”.

While we typically write the pair of statements with the Null Hypothesis listed first,
keep in mind that we often form the Alternative Hypothesis first. This reflects the
Alternative Hypothesis’s status as what we believe is going on. You can write both
hypotheses as labeled sentences or as labeled mathematical statements. I often find
myself using full sentences when I’m writing and using labeled statements when I have
a bullet list. My usage of mathematical statements tends to occur most within my
work notes/scratch work. However, the exception is when I am expressing particular
models; then the mathematical forms of those models will be included in the written
report.

Examples:

• SRQ: Are adult men typically taller than 70 inches?

H0 : Adult men are typically 70 inches tall or shorter.

H1 : Adult men are typically taller than 70 inches.

Alternate Form

H0 : µ ≤ 70

H1 : µ > 70

• SRQ: What is the rate of dust removal in normal people, people who have
obstructive airway disease, and people who have asbestos? Given
Xij = θ + τj + ϵij, i = 1, . . . , n, j = 1, 2, 3

H0 : τ1 = τ2 = τ3

H1 : Not H0 [i.e., at least one τj is different from the others]

Alternate Form

H0 : τ1 = τ2 = τ3

10



HA :


H1 : τ1 ̸= τ2 = τ3

H2 : τ2 ̸= τ1 = τ3

H3 : τ1 = τ2 ̸= τ3

H4 : τ1 ̸= τ2 ̸= τ3

• SRQ: Is the proportion of left-handed (lh) citizens of the USA 0.25?

H0 : πlh = 0.25

H1 : πlh ̸= 0.25

• SRQ: Is there a statistically significant association between a student’s level of
income and academic success (GPA)?

H0 : Student’s level of income and academic success (GPA) are statistically
independent of each other

H1 : Student’s level of income and academic success (GPA) are statisti-
cally dependent of each other

Before going any further, look back at the examples of hypotheses. Notice that for the
ones that contain mathematical statements, there is a particular format: mathemat-
ical symbol, relation symbol, and then a specific value. While not every hypothesis
will be in this format, the vast majority follow this format and highlights the interde-
pendence between the hypotheses and the parameter. Generally speaking, you want
your parameter(s) all on one side of the relation symbol and the “value under the
null” on the other.

2.3 Estimator Selection

As you continue with the process of statistical inference, you must select an estimator
to use. This is the function of data whose long-run behavior you’ll investigate under
the null hypothesis. Ultimately, you’ll use the sampling distribution for this estimator
to make a decision between the two hypotheses. Your choice in estimator is important
but is also fairly flexible. To make your decision you can turn back to your SRQ.
The problem archetype that your SRQ fits with can provide guidance as to what
estimator to use. Additionally, you might end up revising your choice of estimator
based upon your analysis plan that you develop later on2. In some cases, you might
use both kinds of estimators and report both a point estimate and an interval estimate.

Recall that we have two types of estimators in Statistics: point estimators which
are a single function that returns an estimate for the parameter and interval estima-
tors which are a pair of functions whose estimate is an interval.

2As you gain more experience you’ll quickly realize that writing hypotheses, picking estimators,
and designing the experiment really merge into a single thought process that circles back to the
SRQ.
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2.3.1 Point Estimators

When working with Point Estimators, we will often make use descriptive statistics
and then make a inference leap. For example, if we want to understand whether
adult men are typically taller than 70 inches in height, we will often use the Sample
Arithmetic Mean on our data collection. While we will get a measure of how well our
collection accumulates height, then we look at the long-run behavior of the SAM ; we
know that the Expected Value of the sampling distribution will be equivalent to the
Expected Value of adult men’s height3. The following table offers a few suggestions
for point estimators for some of the most common types of problems:

SRQ Problem Type Parametric Nonparametric

Dichotomous Data Prob-
lems

Relative Frequency

Location Problems

SAM Sample Median

Z Wilcoxon Signed Rank

Student’s Pooled t
Wilcoxon Rank Sum

Welch’s t

Matched Pairs t Wilcoxon Signed Rank

Post Hoc Tukey’s HSD Post Hoc Steel-Dwass

Independence Problems χ2 statistic
Kruskal-Wallis H

Jonckheere-Terpstra J

k Sample Problem/Oneway
Layout

ANOVA F statistics Kruskal-Wallis H statistics

Again, this table only provides a small sampling of the point estimators that you
could choose to use.

2.3.2 Interval Estimators

While you may construct interval estimators out of any of the point estimators you
chose, we typically do not use interval estimators for the Independence Problems or
the k Sample Problem/Oneway Layouts. Most of the time, we use interval estimators
for the Dichotomous Data Problems, the Location Problems, and Post Hoc analyses.

There are two dominate types of interval estimators: point estimator based (common

3“Equals” and “Equivalent” aren’t the same concept. When we say that two things are equal,
we saying that the two things really are the same entity. Equivalent, on the other hand, says that
their effect is the same. This is how the Expected Value for the SAM can still be a rate but the
Expected Value for adult height can be an amount. We know this through carefully constructed
proofs in the theory side of Statistics.
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to parametric shortcuts) and percentile based (common to permutation and bootstrap
simulations). Regardless of which style of interval estimator you use, the interpreta-
tion of the interval is the most difficult part. Suppose that you have found that the
95% confidence interval for Expected Value of adult men’s height is (69.3, 72.1). How
might we interpret this interval?

The key here is to remember that being confident that something is true and knowing
something is true are not the same thing. When we say that we’re 95% confident we
are not talking about the interval we found; rather, we’re talking about the method
that we used to construct the interval. Confidence in Statistics refers back to the
Sampling Distribution for the Interval Estimator: 95% confidence means that 95% of
the time (i.e., probability) we carry out the second-order stochastic process to get an
interval estimate, the interval will contain the true value. This is the proper inter-
pretation of a confidence interval (the outcome of an interval estimator). We have no
way of knowing which of the intervals we form will actually contain the true value,
thus to say that the true value is between 69.3 inches and 72.1 inches is incorrect.

This is one of the most commonly messed up portions of statistical inference, even by
those who should know better. Hence the mistaking of claiming that the true value
of the parameter is between the lower and upper bounds that we calculated is known
as the Fundamental Confidence Fallacy. This most common MIS-interpretation
of a confidence interval is as follows:

***Incorrect Phrase Below*Incorrect Phrase Below*Incorrect Phrase Below***

We’re 95% confident that the true value of adult men’s height is between 69.3 and
72.1 inches.

***Incorrect Phrase Above*Incorrect Phrase Above*Incorrect Phrase Above***

This erroneous phrase 1) confuses being confident with knowing, 2) makes our confi-
dence about the particular estimate (which we already know is wrong) rather than the
method of construction, and 3) supports readers in making the same faulty inference
that underpins the phrase to start.

If you encounter someone who makes this incorrect interpretation you have some
choices on what to do: if you feel confident enough in explaining the issue, then help
them improve their understanding. In the event that you don’t, then just smile, nod,
and silently judge/have pity on them.

At their core, confidence intervals cannot be used to verify possible values for the
parameter. Nor can confidence intervals be used to say that any value is more prob-
able or plausible than any other value (this is known as the Plausibility Fallacy).
The way in which confidence intervals are constructed does not allow for this. How-
ever, confidence intervals can be used to falsify values for the parameter. Recall that
we have set up our null hypothesis to be associated with a particular value for the
parameter. We then used the null hypothesis to get to the sampling distribution. The
confidence interval we find contains all of the values for non-rejected null hypotheses
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based upon our collected data. Thus, if we do not find the value we specified in the
null hypothesis in the interval, we have evidence to say that the parameter isn’t that
value.

2.4 Designing the Experiment/Study

When you reach this phase of statistical inference, you will find yourself returning to
your SRQ, your hypotheses, and your choice of estimators to do constant tweaking.
This is a natural part of designing any experiment or observational study. In an
experiment you are going to actively control at least one attribute (referred to as a
factor) to see what the effect is on another attribute (called the response). In an
observational study, you’ll have a much less active role in the study, merely observing
and recording the co-existing values of the attributes you’re looking at. Experiments
allow you to build cause-and-effect models while observational studies allow you build
hypotheses for later testing. Whether you are planning an experiment or an observa-
tional study, there are two distinct phases which you you will make plans for: data
collection and data analysis.

2.4.1 Data Collection

The Data Collection phase of any experiment/study is where you will collect and
record the data you believe is necessary to answer your SRQ. In other words, this is
where you’ll carry out your first-order stochastic process a certain number of times.
Thus, this part of planning entails designing your first-order stochastic process.

You will need to think through what will count as the necessary data for your SRQ
as well as potential sources for variation. These two aspects could cause you to re-
fine your SRQ and/or hypotheses. For example, if you come up with a previously
un-thought of source of variation that you want to track, you’ll have to adjust your
models to now account for this source.

2.4.2 Data Analysis

This phase is where you will think through what you’ll do with your data after col-
lection. Again, based upon your SRQ, hypotheses, and estimator, you’ll be planning
out your analysis approach. As you think through this component of design, you may
refine the prior pieces. In essence, you will be designing the second-order stochastic
process in this phase.

As you plan what analysis you’re going to do, you’ll need to decide on what method
you want to take to get to the sampling distribution of size n for statis-
tic/estimator J (where J is your chosen estimator). Remember, that there are
a variety of ways in which you can get to the sampling distribution including:

• Replication: while the gold standard, this method is the most resource inten-
sive; works for all SRQs and estimators provided you’ve designed your first- and
second-order stochastic processes well.
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• Permutation: this simulation method does require a computer (or a great
amount of time and patience) to do analysis on any data sets that aren’t small.
This can be used to get (exact or approximate) p-values and construct confidence
intervals (percentile based).

• Bootstrapping: this simulation method does require a computer (or a great
amount of time, patience, and supplies) for analysis on data sets that aren’t
small. This method can be used with just about any estimator and will provide
confidence intervals (percentile based). This method is particularly good when
we don’t have a good understanding of an estimator’s standard error.

• Monte Carlo Type A: needs a computer (or lots of time, patience, and
supplies); can be used with most estimators; not as commonly used as the
other methods. Another name for this is parametric bootstrapping.

• Monte Carlo Type B: needs a computer; can be used with most estimators;
mainly used as the idea behind the Shortcut methods.

• Parametric Shortcuts: the most common approach to doing statistical infer-
ence. Many of these methods can be done by hand as well as through software.
We are required to make the most assumptions with these methods. These
methods will generate (approximate or asymptotic) p-values as well as confi-
dence intervals (point-estimator based).

• Nonparametric Shortcuts: the second-most common approach to doing sta-
tistical inference. Many of these methods can only be done by hand for small
data sets; computers do most of the work for us. We are required to make many
assumptions for these methods, but not as strong of assumptions as in Para-
metric Shortcuts. These methods will generate (approximate or asymptotic)
p-values and confidence intervals (point-estimator based).

2.5 Setting the Significance/Confidence Level

Before you claim that you’ve finished designing your experiment/study, you should
stop and pick which Type I Error Rate you’re going to control for and at what
level. This is also the time for you state what you’re going to use as your cutoff for
unusual events under the null hypotheses (i.e., your threshold of unusualness or level
of significance).

2.5.1 Picking the Type I Error Rate

Recall that a Type I Error is when we reject the null hypothesis (i.e., conclude that
the null model is not consistent with our data) even when the null hypotheses actually
does a better job at describing our data than the alternative. There are five Type
I Error Rates that we can choose to control. Listed from least to most conservative
(i.e., amount and strength of evidence required to reject the null):

• Comparisonwise Error Rate (CER): This rate controls the probability of
making a Type I error on a single hypothesis test. Control this error rate when
you are only going to do ONE hypothesis test. The more hypothesis tests you
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conduct, the faster the probability of making at least one Type I error reaches
1. For example, conducting 10 independent tests while controlling CER at 0.1
will see your probability of making at least one Type I error at 0.65.

• Experimentwise Error Rate (EER): This rate controls the probability mak-
ing a Type I error for a set/collection of hypothesis tests. If you have one set of
data and you’re planning on conducting multiple independent hypothesis tests
on that data, this is an error rate you should look at controlling rather than
CER.

• False Discovery Rate (FDR): This rate controls the rate at which you make
Type I errors relative to the number of discoveries you make. The FDR only
focuses on statistical discoveries (rejections of the null hypothesis) whereas the
EER looks at the number of hypothesis tests. You can control this rate when
you want a more fine grain control on Type I Errors for a set of hypothesis tests.

• Strong Familywise Error Rate/Maximum Experimentwise Error Rate
(MEER): The FDR allows for more Type I Errors with an increasing number
of statistical discoveries; to create a limit on the inflation of the upper limit to
FDR, the MEER caps the probability of making a false discovery regardless of
the number of tests or discoveries made.

• Simultaneous Confidence Intervals: This is the most conservative method
and accounts for trying to fit multiple confidence intervals at the same time.
In essence, this method caps the probability of making a Type I error for all
of the methods of confidence interval construction occurring within the experi-
ment/study. While designed primarily for making confidence intervals, you can
also use this error rate for point estimation and getting p-values.

For most introductory courses, you’ll operate mostly at the CER and EER levels.
Any problem where we need to use the Oneway layout (i.e, ANOVA), the methods
that we use will automatically control the EER. When you start conducting your own
research, you will need to think carefully about which of these five you want to pick.

2.5.2 Setting Your Error Rate

Once you have picked which Type I Error Rate you’re going to control, you need to
pick the level at which you’re going to control the error rate. We get to pick this
value for ourselves. However, there are certain guidelines/conventions. Keep in mind
that we interpret this value as the probability of making at least one Type I error.
Thus, we want to keep this in mind when picking a value. The general guidance is to
pick a value in the interval (0, 0.15]. When you go to pick your value, there are few
guidelines you can follow:

• Does your lab/division/company have a set standard which you need to use?

• Does the journal you’re submitting to for publication have a set standard?

• What are the standards of your field?

• Are you dealing with something that has a critical impact on people (think
life/death, medical research)?
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• What is your gut telling you?

These questions can help you make a decision as to the initial value. You can change
this value at any time EXCEPT AFTER YOU COLLECT AND BEGIN ANALYZ-
ING YOUR DATA. The moment you have your data and you start analysis, chang-
ing your threshold of unusualness value puts you into ethically ambiguous territory.
(There are a few cases where you will have to make a change; document those cases.)

2.5.3 Setting Your Threshold of Unusualness, αUT

Depending on which Type I Error Rate you’ve selected and your initial value, you
may need to make adjustments for individual tests. For what is listed below we’ll use
αUT to represent your Threshold of Unusualness.

Controlling CER: If you only plan to control CER, then set CER = αUT .

Controlling EER: If you plan to control EER AND you’re using the methods
we’ve covered in class, then set EER = CER = αUT . Otherwise, you’ll use an
additional adjustment.

Everything Else: If you plan to control one of the other error rates, then you
will need to adjust αUT for each individual test. Common adjustment methods
include Bonferroni, Holm-Bonferroni, Šidák’s correction, and many others. If
you find yourself in this situation, I recommend that you talk to a statistician.

2.6 Carrying Out the Experiment/Study

At this point in time, you’ve reached the stage where you can either become trapped
in an endless cycle of revisions or you can go ahead and carry out your first-order
stochastic process to collect your data. Make sure that you follow your methods as
closely as possible, and keep a record of any deviations from the method.

2.7 Analyzing Your Data

Once your data is collected, now you begin the process of analysis. There are two
parts of this step: cleaning and analyzing.

2.7.1 Clean Your Data

Yes, even if you are the one who has done everything from the genesis of the SRQ
through data collection, you still need to clean your data. Remember, that cleaning
your data is primary way you build your understanding of the data (as well as pro-
viding an opportunity for you to identify/correct any mistakes).

In addition to cleaning data, this is also where you can start building data visualiza-
tions and looking at the values of descriptive/summary statistics. You are forming
the data narrative which you will then use as the backdrop for the analysis portion.
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2.7.2 Analyze

This is the portion where you’ll actively try to answer your SRQ (i.e., Statistical
Inference). This is where you’ll now carry out your second-order stochastic process.
You start this process by checking the assumptions for the method you selected.
Then, if you are going to use Permutation or Bootstrapping, this is where you’ll set
everything up in the computer and then patiently wait for the simulation to run.
Otherwise, you’ll carry out the Parametric or Nonparametric Shortcut.

2.7.2.1 Checking Assumptions
You’ll want to think through the assumptions associated with your selected method
to get the sampling distribution. Make use of data visualizations to help you check
these methods as the formal tests are often not robust, resistant, or smooth.

2.7.2.2 The Inference Step
Once you have carried out the simulation/shortcut, you’ll need to make the inference
step. That is to say, you’ll now need to make a decision between hypotheses using
the data and methods as your evidence and reasoning.

• p-value Method: You’ll select the appropriate p-value for your hypotheses
and compare this probability value to αUT . If the p-value is less than (or
equal to) αUT , then we have observed an event that is “unusual” given the
null hypothesis. We then take that data as being evidence against the null
hypothesis. Our inference is that we “reject” the null hypothesis.

• Confidence Interval Method: You’ll look at the appropriate confidence in-
terval that reflects your alternative hypothesis. You’ll then use the value you
specified in the null hypothesis (e.g.,, θ0, 0, 1, 2, µ0) and look to see if that
value is contained within the interval. If the value IS NOT in the interval we
say that data are not consistent (i.e., against) with the null hypothesis. Our
inference is that we “reject” the null hypothesis.

• Critical Value Method (Archaic): We can also find what is called the
“Critical Value” for our estimator and then compare our observed value (J∗) to
this critical value (JCV ). If J∗ ≥ JCV , then we say that our data do not support
the null hypothesis. (IMPORTANT NOTE: the inequality must match your
alternative hypothesis.) Our inference is that we “reject” the null hypothesis.

If you find yourself with a p-value greater than αUT , a confidence interval that contains
θ0, or J∗ < JCV , then your inference is “fail to reject” the null hypothesis. Some
individuals prefer to say “accept” rather than “fail to reject” while others are against
this idea. I have no strong feelings one way or the other as long as you realize that
“accept” and “fail to reject” are meant to be interchangeable in this setting.

2.7.2.3 Effect Size
The last step of analysis is to move from the “Is there a statistically significant dif-
ference?” question to the “How much of a difference is there?” question. This is
the transition from the Yes/No statistical significance question to the question of
practical significance. Often times researchers aren’t actually interested in statistical
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significance, rather they want to know about the pragmatic impacts of the research.
We refer to this as effect size. Every hypothesis test that we cover will have at least
one measure of effect size. However, getting to that measure depends upon your ac-
cess to different software packages. Unfortunately, Minitab Express does not include
Effect Size measures. (JMP, JMP SE, and JMP Pro can provide measures through
a StatsTools add-in; R can get you effect sizes through various additional packages).
Perhaps the effect size that you’re most familiar with is correlation; Pearson’s corre-
lation is the measure of how strong the linear relationship between two attributes is.
As a final step of any analysis where you’ve rejected the null hypothesis, you should
calculate and record the values of the appropriate effect sizes.

2.8 Writing Up and Report Your Findings

Just as you should end your describing data phase of the Statistical Work Flow with
a written data narrative, you’ll need inference phase methods with another written
narrative. This time you’re writing up your inference. You do not need to go into
the nitty-gritty details of what you’ve done, nor do you have explain what each value
means. (You get to make some assumptions about the reader’s level of knowledge.)
You’ll want to be sure to include the following:

• A mention of your level of significance (i.e., αUT ) or confidence (the complement
of αUT )

• What method you used used (permutation, bootstrapping, Parametric/Nonparametric
Shortcut–give the specific name for the shortcut used) and your chosen statis-
tic/estimator

• That you checked the assumptions and what you found; data visualizations can
be useful here if there are potential problems that you need to discuss

• The observed value of your chosen statistic/estimator

• Either the p-value or the confidence interval you’ve found

• State your inference

• If rejecting the null, give effect sizes

• Repeat with any Post Hoc analyses

With time, you’ll get faster and better at writing up your findings as well as weaving
them into the larger data narrative.

3 Examples

In this section, I will go through several examples of the process laid out above. To
save space, I won’t necessarily layout all of the details.

3.1 Baseball Caps and Height

Suppose we’re interested in whether people who wear baseball caps regularly are
shorter than people who don’t. This would give us the SRQ “Are people who reg-
ularly wear baseball caps shorter than people who do not regularly wear baseball
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caps?” This kinds of question is a two sample location problem as we’re ultimately
wanting to compare the location parameter for height between two populations (reg-
ular baseball cap wears and those who aren’t). We will let’s use the SAM as the
basis for a difference statistic and use a parametric shortcut (Welch’s t test). We’ll
update our choice of estimator to Welch’s t statistic. Our hypotheses will be:
H0 : regular baseball cap wearers are just as tall or taller than non-regular baseball
cap wearers
H1 : regular baseball cap wearers are shorter than non-regular baseball cap wearers

For any individual, we know that we need to log two attributes’ values: the indi-
viduals height (inches) and whether or not they are a regular baseball cap wearer.
Let’s state that someone is a regular baseball cap wearer if they wear a baseball cap
at least once a day, at least four times a week. We will go ahead a restrict our pop-
ulation to students at our university, modifying our question: “Are students at our
university who regularly wear baseball caps...” Since we’re only doing one hypothesis
test, we’ll control CER and we’ll set αUT = 0.05.

Our first-order stochastic process would then consist of getting a listing of students
from the Registrar’s Office to be our sampling frame. We would then construct
a lottery. We might want to ensure that we get representation for each year of
school (first-year, sophomore, junior, senior, graduate) as well as gender (male, fe-
male, other). We’ll revise our single lottery into 15 separate lotteries reflecting the
unique pairings of each year and each gender. For each stratum, we will select an
individual and see if they are willing to participate. If yes, record their height and
how often they wear baseball caps.

For our second-order stochastic process, we’ll make use the Welch’s t as a para-
metric shortcut. After plugging the data into a software program, and calling the
t-test option, we can calculate a p-value for our one-directional test. If we reject the
null, we would then want to calculate the appropriate effect size measure. (I don’t
have data for this question so I can’t go much further.)

3.2 Figuring Out Who Cheated

Investigating whether or not some cheated at a game or on exam is a common ap-
plication of statistical inference. Here, we’ll look at whether or not four students
cheated at playing the Star Game. The game is played by drawing out a numbered
piece of paper from a paper bag and drawing a star in the corresponding numbered
box of a grid. The piece of paper is returned and the player repeats this process 15
more times. Here are the four game boards for the students:
Our question of “Who cheated?” does indicate that we will need to make more than
one inference. Thus, we really have four SRQs, one for whether each student cheated.
This gives us four sets of hypotheses:

1) Did Alex cheat?

H0 : Alex did not cheat.

H1 : Alex did cheat.

2) Did Beryl cheat?

H0 : Beryl did not cheat.

H1 : Beryl did cheat.
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3) Did Cristobal cheat?

H0 : Cristobal did not cheat.

H1 : Cristobal did cheat.

4) Did Dora cheat?

H0 : Dora did not cheat.

H1 : Dora did cheat.

Since we know that we’re going to need to do four hypothesis tests, we should control
our Type I Errors with a stronger rate than CER; let’s control EER and set our initial
αUT = 0.15. We’ll go ahead an use Bonferroni’s correction to adjust our individual
tests’ thresholds, α∗

UT = 0.15
4

= 0.0375.

While our data comes to us automatically, we’ll still think through the generation
of the data (also serves a refresher of the context): a person gets a bag with the
number 1–16 on squares and a numbered game board. The person reaches into the
bag and draws out a single square; the person than places a star in the corresponding
numbered space on the game board. The person then returns the square to the bag.
The bag is shaken. Repeat until the person has drawn a total of 16 times. Our
questions about whether each student cheated falls into the problem type of Distri-
bution/Density Problem. In essence, we can compare each student’s game board to
the long-run behavior of the game.

Individual Value of Kolmogorov’s D P
[
D∗ > D0

∣∣assumptions
]

Is p-value ≤ α∗
UT ?

Alex 0.0696 1.0000 No

Beryl 0.1321 0.4838 No

Cristobal 0.2348 0.1024 No

Dora 0.3676 0.0033 Yes

To test these hypotheses, we will make use of a nonparametric shortcut for Distribu-
tion Problems using a statistic called Kolmogorov’s D. This statistic measures the
discrepancy (as a distance) between a particular named distribution and the actual
accumulation of outcomes. In this situation, the long-run behavior of the game is
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a Poisson distribution with a unit rate of success equal to 1. Since we’re using a
shortcut our second-order process involves invoking a particular distribution’s CDF
to get a p-value.

We can now see that our data support the inferences that Alex, Beryl and Cristobal
did NOT cheat while the data support the idea that Dora did cheat. (We don’t worry
about effect size in this setting.) I should quickly remark here that while this is evi-
dence supporting the model that Dora cheated at the Star Game, we do not know if
she actually cheated; she could legitimately get that game board which is a very rare
occurrence (happens 0.33% of the time you play the game forever). Jumping straight
to saying that she did cheat puts you on the fringes of a Type IV error.

3.3 Types of Oreos and the Amount of Stuf

Not counting different flavors of creme filling nor flavors of wafers, there are four
major types of Oreos: Regular, Double Stuf, Mega Stuf, and Thins. Suppose that
we want to know whether or not there actually is a difference between the amount
of creme filling (the stuf) based upon the type of Oreo. Since we’re looking at four
different types of Oreos, we are in a four sample location problem and will need to
use the oneway layout. We need to track the mass of creme filling (in grams) and the
kind of Oreo. The kind of oreo will be our factor. We will make use of the following
baseline model where Yij represents the amount of cream filling for oreo i of type
j: Yij = µ·· + αj + ϵij. (We’ll let 1 represent Double, 2 represent Mega, 3 represent
Regular, and 4 represent Thins.) This will let us then use the following hypotheses:

H0 : α1 = α2 = α3 = α4 vs. H1 : Not H0

As we think about our first-order stochastic process, we will want to first generate
a list of stores that sell all four types of Oreos. Our sampling frame will only con-
sist of such stores; for my convenience, this will be further restricted to stores in
Tempe, AZ. After selecting the store via a lottery, I will drive to said store and go
to the appropriate aisle. For each type of Oreo, we will assign each package a unique
ID and conduct a quick lottery to select the one package of each type to be used.
(This is an example of tiered sampling.) I will then purchase the cookies and re-
turn home. We will measure each cookie’s mass of creme filling (we’re doing cluster
sampling). As we record the type and mass of cream filling, we will also want to
record which row the cookie came from and the measurement position. This will
helps decide whether or not Oreo cream filling is actually independent; they aren’t:
https://youtu.be/jS_et4PP0P8?t=36.

Since we’re in a Oneway Layout (ANOVA setting), we ideally would want to use the
F statistic. We also will control the EER Type I Error Rate; let us set αUT = 0.05.
However, we do have an issue with independence as well as normality. The parametric
F test while robust to slight violations of the Normality Assumption, is not robust to
violations of the Independence Assumption. However, bootstrapping is more robust.
Thus, we will do the following for our second-order stochastic process:

1. Calculate the observed value of the F statistic; that is, F ∗ = 1889.134
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2. We will bootstrap 1000 replicates of the F statistic using 416 as our random
seed.

3. We will then look at the 95% Bias Corrected Confidence Interval; (1347.49, 2594.73)

I’ve added the results above. If you would like to follow along, you may do so by
accessing the data here:

JMP: https://www.dropbox.com/s/wharwik1xgv5mnk/Oreo.ANOVA.jmp?dl=
1

Minitab: https://www.dropbox.com/s/pkm0bhe8vd50z1w/Oreo.ANOVA.mpjx?
dl=1

To make our decision, we would need look for the value of F under the null hypothesis;
in case this would be the expected value of the F distribution with 3 and 123 degrees
of freedom or 1.0165 (note: this is beyond this course to know how to calculate).
That value is well outside of our confidence interval, thus our data are not consistent
with the null hypothesis.

Since there is a statistically significant difference in the effect of Oreo type on the
mass of creme filling, we should also look at effect sizes for the omnibus test (i.e.
ANOVA) as well as for follow up Post Hoc tests. The alternative model that the type
of Oreo contributes to the mass of creme filling accounts for 98% of the all of the
variation in the mass of the stuff (η2 = 0.97876, ω2 = 0.97807).

All of the types of Oreos are statistically different from one another with large effect
sizes; Cohen’s d varies from 8.758 when comparing Mega to Thin down to 1.348 for
Regular to Thin. The smallest probability of superiority is 0.83 for a Regular Oreo
beating a Thin Oreo for amount of stuf; the others are essentially 1. Thus, Mega
stuf has the more stuf than Regular, Double, and Thin; Double stuf has more than
Regular and Thin but less than Mega, Regular has more stuf than Thin, but less
than Double and Mega, and Thin has less stuff than the other three. (Effect sizes do
let us go beyond the standard yes/no for interpretations.)
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